RNA-SEQ Insights
I PREFACE
🌱 Welcome to the RNA-Seq Q&A Guide
🌐 The CDI Learning Path
📂 What kind of data will you be using in this guide?
II DATA PREPARATION
1
How do you create a project data folder for storing RNA-Seq inputs and outputs?
1.1
Explanation
1.2
R Code
2
How do you generate synthetic RNA-Seq counts and metadata using R?
2.1
Explanation
2.2
R Code
3
How do you validate RNA-Seq input data before analysis using R?
3.1
Explanation
3.2
R Code
4
How do you perform differential gene expression analysis using DESeq2 in R?
4.1
Explanation
4.2
R Code
5
How do you create a volcano plot from DESeq2 results using R?
5.1
Explanation
5.2
R Code
6
How do you create an MA plot from DESeq2 results using R?
6.1
Explanation
6.2
R Code
7
How do you log-transform RNA-Seq counts for PCA or clustering using R?
7.1
Explanation
7.2
R Code
8
How do you create a heatmap of top differentially expressed genes using R?
8.1
Explanation
8.2
R Code
9
How do you visualize RNA-Seq samples using PCA in R?
9.1
Explanation
9.2
R Code
10
How do you visualize the expression of a single gene across conditions using R?
10.1
Explanation
10.2
R Code
11
How do you visualize the expression of two or more genes across conditions using R?
11.1
Explanation
11.2
R Code
Explore More Guides
🧬 RNA-Seq Data Science in R
🧬 RNA-Seq Data Science in R
Last updated: July 01, 2025